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Abstract

Three-dimensional Navier–Stokes computational fluid dynamics (CFD) analysis has been performed in an effort to determine thermal
boundary layer correction factors for circular convective heat flux gauges (such as Schmidt–Boelter and plug type) mounted flush in a flat
plate subjected to a stepwise surface temperature discontinuity. Turbulent flow solutions with temperature-dependent properties are
obtained for a freestream Reynolds number of 1E6, and freestream Mach numbers of 2 and 4. The effect of gauge diameter and the plate
surface temperature have been investigated. The 3D CFD results for the heat flux correction factors are compared to quasi-2D results
deduced from constant property integral solutions and also 2D CFD analysis with both constant and variable properties. The role of
three-dimensionality and of property variations on the heat flux correction factors has been demonstrated.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Cylindrical flush mounted heat flux gauges (such as
Schmidt–Boelter and plug type gauges) are frequently used
on launch vehicles for measuring convective and radiative
incident heat flux. The presence of the heat flux gauge
necessarily alters the temperature and heat flux distribution
on the gauge surface [1]. These gauges (normally metallic
such aluminum, stainless steel, copper, etc.), when flush
mounted in ablators or insulators of relatively low thermal
conductivity (forming the vehicle surface), are subjected to
wall temperatures considerably lower than that of the sur-
rounding vehicle skin material (by several hundred
degrees). On account of this surface temperature disconti-
nuity (mismatch), heat exchange occurs between the gauge
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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and the surrounding material by conduction, and the
thermal boundary layer is altered (distorted), producing
changes in the convective heat transfer coefficient from
the fluid to the gauge surface. In convection, the thermal
history of the boundary layer is carried with the fluid and
affects the downstream heat transfer [1]. The changes in
surface temperature and the departure of the heat transfer
coefficient from the isothermal value demand that the heat
flux measured by the calorimeter (gauge) deviates consider-
ably from the true heat flux that would be measured if the
gauge is formed of the same material as that of the insula-
tion [2,3]. Experiments and analyses [4–10] have shown that
a variable surface temperature distribution can produce a
marked increase or decrease in the local and average
convective heat transfer rates to a surface in laminar and
turbulent flow.

Correction factors have been proposed in the past to
account for the departure of the measured heat flux from
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Nomenclature

b (Tw1 � Taw)/(Tw2 � Taw)
c sound speed,

ffiffiffiffiffiffiffiffiffi
cRT
p

cp specific heat at constant pressure
h heat transfer coefficient
k thermal conductivity
L reference plate length
M local Mach number
Nux local Nusselt number, hxx/k
Pr Prandtl number
q heat flux, h(Tw � Taw)
R gas constant; also radius of heat flux gauge
Re Reynolds number
r recovery factor
Stx local Stanton number, hx/(q1cpu1) = Nux/

(RexPr)
T temperature
u, v, w velocities in the x-, y-, z-directions, respectively
x streamwise direction
y lateral direction
z direction normal to the plate surface

Greek symbols

d0 hydrodynamic boundary layer thickness at the
step

/ (Tw1 � Tw2)/(Tw1 � Taw)
c ratio of specific heats (isentropic exponent)
l dynamic viscosity
q density
sw wall shear stress
f (Tw2 � Tw1)/(Tw2 � Taw)

Subscripts

0 stagnation
1 plate
2 gauge
A area-averaged
aw adiabatic wall (recovery)
L length-averaged
x local
w wall
1 freestream
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the true heat flux. Rubesin [4] and Reynolds et al. [5,6]
presented 2D integral solutions for the local heat transfer
coefficient in incompressible flow past a flat plate with zero
pressure gradient and a stepwise surface temperature with
the assumption of power law profiles for velocity and tem-
perature. These solutions are based on the superposition of
well-known unheated starting length solutions [2,11].
Recently, Mukerji et al. [12] extended the integral solution
of Reynolds et al. [5,6] with an empirical correction (based
on low speed data) to accommodate the effect of the vis-
cous sublayer on the gauge surface (see Appendix A.3).
Such a correction increases the influence of the temperature
jump especially for small gauges, and offers a considerable
improvement. On the basis of closed from integral solution
due to Reynolds et al. [5,6], Westkaemper [13] derived a
length-averaged heat transfer coefficient for the heat flux
gauge.

Many simplifying assumptions are considered in the
development of the integral solutions. The 1/7th power
law solution is valid only far downstream of the step, as
the profiles are developed at relatively large distances
downstream of the step. Very near the temperature step,
the thermal boundary layer is confined to the viscous sub-
layer. Artificial diffusivity in the sublayer (on account of
1/7th power law profiles throughout), which is the most
important part of the boundary layer, produces error in
the region immediately downstream of the step in temper-
ature [11]. Also, the boundary layer equations may not
strictly apply near the leading edge of the discontinuity.
Thus the accuracy of the integral solution at distances
within a few boundary layer thicknesses is questionable.
It is known that the integral solution due to Reynolds
et al. [5,6] is known to underpredict experimental data by
as much as 25% at x/d0 = 1.0, and exceeds 30% for
x/d0 = 0.25 [12]. Another major deficiency of these integral
solutions is connected with the assumption of constant
thermal properties, which can lead to significant errors
when the difference between the plate and the gauge surface
temperatures becomes large, such as occurs at high Mach
numbers encountered in flight conditions. In such circum-
stances solutions of the Navier–Stokes equations are
necessary.

Kandula and Reinarts [14] carried out a 2D Navier–
Stokes CFD analysis with variable properties to investigate
thermal boundary layer corrections for the local heat trans-
fer coefficient. It was shown that the correction factor for
convective heat transfer coefficient increases with the wall
temperature. To account for the circular geometry gauge,
a quasi-2D analysis was also carried out, wherein at any
lateral plane of the gauge, the flow is assumed quasi-2D,
so that area-averaged heat transfer correction factor incor-
porating 3D effects approximately can be estimated. Com-
parisons were then presented between the quais-2D results
from CFD (variable properties) and the constant property
integral solutions, signifying the importance of property
variations.

The assumption of quasi-2D approximation can be in
error as the size of the heat flux gauge is reduced in view
of the preponderating effects of the three-dimensionality
of the thermal boundary layer. In such circumstances, it
is imperative to consider the full 3D thermal boundary
layer effect on the heat flux correction factors. To the
authors’ knowledge, no such study has been reported
previously.
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In this report, 3D Navier–Stokes simulation of the ther-
mal boundary layer has been carried out for the plate–
gauge system subjected to a stepwise surface temperature
discontinuity. The effect of various relevant parameters
on the correction factors has been studied. Comparisons
of the 3D analysis with quasi-2D CFD results and integral
solutions have also been performed. The effect of three-
dimensionality of the thermal boundary layer and of prop-
erty variations on the convective heat flux corrections for
the gauges has been investigated.

2. Three-dimensional CFD analysis

2.1. Physical assumptions

The following physical assumptions are made in the
CFD analysis:

(a) The heat flux gauge is in steady state (water-cooled).
(b) The gauge surface is idealized as isothermal. For

example, a Schmidt–Boelter gauge is not strictly iso-
thermal even when it is water-cooled [15].

(c) The external flow is uniform, and pressure gradient,
surface curvature and separated flow are absent.

(d) The Prandtl number of the fluid is taken as 0.7.
(e) Both the plate and the gauge surfaces are smooth,

with the gauge flush-mounted into the plate.

2.2. Grid system

The overlapping grid system for the plate/gauge config-
uration is shown in Fig. 1a, indicating the plate grid
(118 � 72 � 84 size in the streamwise, lateral and normal
Fig. 1a. Overall view of
directions) and the gauge grid (69 � 69 � 63 size in the
radial, circumferential and normal directions). The total
number of grid points is about 9.9 � 105. Individual grids
for the plate and the gauge are generated. The inter-grid
communication is provided by the Pegasus code, Benek
et al. [16]. Fig. 1b displays a side view of the grid. A plan
view (partial) of the grid is provided in Fig. 1c.

An upstream inviscid plate length (�0.5 < x/L < 0) is
considered. The plate leading edge and trailing edges are
located at x/L = 0 and 2, respectively, with the gauge sur-
face centered at x/L = 1. The grid normal extent is taken as
z/L = 0.9. For flow resolution purposes, the grid is clus-
tered in the normal direction (near the wall) and in the axial
direction (near the leading edge and near the surface tem-
perature discontinuity).

2.3. Flow solution

The flow solution (for density, velocity and temperature
distribution) has been obtained by the OVERFLOW com-
pressible Navier–Stokes CFD code [17,18]. A zonal two-
equation k–x shear stress transport (SST) turbulence
model due to Menter [19] has been considered. The k–x
model has been validated for boundary layers and free
shear layers [20].

Freestream boundary conditions are applied at the
inflow boundary (x/L = �0.5), top boundary and at the
lateral boundary away from the symmetry plane. Lateral
symmetry is used at the symmetry plane. An extrapola-
tion boundary condition is considered at the outflow
(x/L = 2). Viscous wall condition is prescribed at the plate
and the gauge surface. Isothermal conditions are specified
for the plate surface (T = Tw1) and the gauge surface
(T = Tw2).
the 3D grid system.



Fig. 1b. Side view of the grid system.

Fig. 1c. Plan view of the grid system in the neighborhood of the gauge.
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The steady state solution is obtained by multi-gridding
and local time-stepping. The algorithm used is diagonalized
alternating direction implicit (ADI), with central differenc-
ing for fluxes. Sutherland correlations are considered for
the temperature dependence of viscosity and thermal con-
ductivity of air [21,22].
2.4. Flow and geometry parameters

Solutions were obtained for a freestream Reynolds num-
ber of 1E6, and freestream Mach numbers of 2 and 4. Val-
ues of the gauge radius to plate length ratio R/L = 0.005,
0.01, 0.025, 0.05, 0.075 and 0.1 are considered. The free-
stream temperature is 288 K (519R), and the gauge surface
temperature is held at 333 K (600R). The plate wall temper-
ature is varied in the range 389–1944 K (700–3500R), and
comprises values on either side of the adiabatic wall (recov-
ery) temperature. The recovery temperature is computed
from

T aw

T1
¼ 1þ r

c� 1

2
M2 ð1Þ
where the turbulent recovery factor is obtained from

r ¼ Pr1=3 ð2Þ

With an assumed value of Pr = 0.7, the above formula
yields a recovery temperature of 494 K for M = 2, and
1111 K for M = 4.
3. Results and comparison

As indicated in the assumptions, all the results presented
here with regard to CFD and the integral models are lim-
ited to uniform flow past a flat plate, where pressure gradi-
ent, surface curvature or separated flow are absent. The
computations are performed on an 8-processor (R-10000)
SGI Origin-2000 machine.
3.1. Solution convergence

Fig. 2 shows the convergence history for the solution
residuals in a typical case. This residual history serves as
a qualitative measure of the convergence to steady state,
and suggests that convergence in residuals (several orders
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Fig. 2. Convergence history of solution residuals.
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of magnitude drop in residuals) for the two grids is
approached in about 2000 time iterations.
3.2. Local Stanton number distribution

The local Stanton number distribution in the symmetry
plane for a particular case is illustrated in Fig. 3a for
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Fig. 3a. Local Stanton number distribution in the symmetry plane.

Fig. 3b. Thermal boundary layer alteratio
R/L = 0.01 and M = 4, Tw1/Taw = 0.5, and Tw2/Taw =
0.3. A jump in the local Stanton number on the gauge sur-
face (0.99 < x/L < 1.01) is noted, as is to be expected.
Downstream of the gauge, the recovery in the local Stanton
number is established. The close agreement between the
plate solution and the gauge solution in the overlapping
region suggests that the overlapping grid scheme is
satisfactory.

A schematic of the thermal boundary layer in the vicin-
ity of the discontinuity for the symmetry plane is illustrated
in Fig. 3b. The emergence of a new thermal boundary layer
past the discontinuity is illustrated. Fig. 3c highlights the
Stanton number distribution on the gauge surface. The
extent of the three-dimensionality of the thermal boundary
layer is evident near the leading edge and the trailing edge
of the gauge.
3.3. Heat flux correction factors

The effect of variation of properties on the heat flux cor-
rection factors is illustrated in Fig. 4a for the case of M = 4
and R/L = 0.01. The constant property quasi-2D solutions
for the integral method and the modified integral method
[12] are compared with the quasi-2D CFD results for both
constant and variable properties, and with the 3D CFD
variable property solution. In the legend, CP stands for
constant properties, and VP for variable properties. In gen-
eral, a linear variation of q2/q1 with / is noted, as predi-
cated by the integral result of Eq. (A.5). It is seen that
the modified integral solution shows better agreement with
the 2D CFD constant property solution. The variable
property 2D CFD solution falls between the constant prop-
erty 2D CFD solution and the modified integral solution.
The 2D CFD solutions reveal that as the plate temperature
to recovery temperature difference increases, the effect of
the property variation becomes more pronounced.

Fig. 4a also suggests that the 3D CFD solution for the
heat flux correction factor exceeds that obtained by
quasi-2D CFD solution. The effect of three dimensionality
is seen to increase with an absolute increase in /. The phys-
ical mechanism for the enhanced heat flux in three
n near the temperature discontinuity.



Fig. 3c. Stanton number distribution on the gauge surface.
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dimensions may be explained as follows. As the chord
length of the gauge decreases away from the center-line,
the quasi-2D assumption becomes more and more unreal-
istic, and the leading edge effect increases the overall 3D
heat flux in the presence of a step. Data obtained by
Mukerji et al. [12] under low turbulence (4%) and high tur-
bulence (7–10%) freestream turbulence level suggest that
spanwise transport of heat through turbulent diffusion is
not an important effect for a 2D heated element (increases
the heat transfer rate by at most 5%).

Fig. 4b shows the corrections factor variation as a func-
tion of Tw1/Taw for Tw1/Taw < 1. The results reveal that the
deviation between 2D and 3D CFD increases as the wall
temperature increases, indicating the importance of 3D
thermal boundary layer. The modified integral solution is
seen to offer a considerable improvement over the integral
solution when compared with the CFD results.

Comparisons for the correction factors for M = 0.2 and
R/L = 0.01 are presented in Fig. 5. The general trends are
seen to be similar to those expressed in Fig. 4a. A direct
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comparison between 3D CFD results at M = 4 and M = 2
is displayed in Fig. 6, showing the effect of Mach number
on the heat flux correction factors. The results reveal that
the correction factor increases as the Mach number
increases, as is to be expected owing to the role of com-
pressibility and property variations. It is expected that
the agreement would be closer if the values of Tw2/Taw were
kept constant in both cases.

Calculations for M = 4 at R/L = 0.1 (Fig. 7) indicate
that the heat flux correction factors are smaller than those
for R/L = 0.01. Although the trends are similar to those for
R/L = 0.01, it is observed that there is no appreciable dif-
ference between the 3D and the 2D CFD results, suggesting
that the effect of three dimensionality becomes negligible
for R/L = 0.1.

The heat flux correction factors for M = 4 at R/L =
0.005 are depicted in Fig. 8. At R/L = 0.005, the heat flux
corrections factors are found to be higher than those for
R/L = 0.01, as is to be expected. Again the modified inte-
gral solution agrees better with the 2D CFD solution as
compared with the original integral solution. It is remark-
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Fig. 7. Comparison of heat flux correction factor for M = 4 at R/L = 0.1.
able that the 3D CFD results are smaller than those from
2D CFD values in the range of / from �0.3 to 0. The phys-
ical basis for this behavior is not clear.
3.4. Comparison with test data

In an effort to validate the predictions, comparisons are
made with limited test data recently reported by Strobel
et al. [23] at M = 4 and Re = 1.2E6. The data were
obtained from ground tests at NASA Marshall hot gas
facility (HGF) employing hydrogen–air combustion. Heat
flux data were obtained from Schmidt–Boelter gauges
(4.76 mm diameter, aluminum) supplied by AEDC (Arnold
Engineering Development Center), and reference thin-skin
calorimeters (2.54 mm thick and 114 mm diameter; 17–4
PH stainless steel) with the latter designed to eliminate
2D conduction. A range of heating conditions can be pro-
duced by varying combustor pressure and temperature.
The test section is comprised of a flat plate (12.7 mm thick,
304.8 mm wide, and 501.7 mm long). Both bare steel plate
and steel plate covered with acusil thermal protection sys-
tem (TPS) insulating material are considered. The heat flux
gauges are not water-cooled. Instead, the plate–gauge sys-
tem is operated in dynamic (transient) mode. The measured
surface temperatures suggest that the temperature–time
history becomes quasi-steady in a few seconds (the test
duration is about 20 s).

The thin skin heat flux is found to be comparable
regardless of the surrounding material (steel or acusil).
There are small discrepancies between heat flux gauge out-
put and thin skin response when gauges are mounted in
stainless steel. However large discrepancies are noted when
the gauges are mounted in acusil on account of changes in
the thermal boundary layer. The original data are reported
in terms of cold wall heat flux (Tw = 300 K), and are con-
verted to hot wall heat flux. Considering uncertainties in
surface temperature measurement, material properties,
and dimensions, and errors associated with lateral heat
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conduction loss, the measured heat flux data are believed to
be within about 7% accuracy.

Fig. 9 shows the variation of q2/q1 as a function of R/L as
predicted by various theories and their comparison with test
data. The data at 10.2 atm stagnation pressure correspond
to wall temperatures of Tw1/Taw = 0.508 and Tw2/Taw =
0.303, and those at 13.93 atm stagnation pressure corre-
spond to Tw1/Taw = 0.515 and Tw2/Taw = 0.296. The pre-
dictions suggest that q2/q1 decreases with an increase in
the value of R/L. The 3D CFD results are higher than 2D
CFD values, and the deviation increases with a decrease
in R/L. The test data corresponding to R/L = 0.01 and
0.025 are seen to lie between the 2D CFD and 3D CFD
results. In general the CFD results exceed considerably
the constant property integral solution. For the range of
conditions considered here, the integral solution of [5,6] is
within 5–25% lower than the CFD results. The modified
integral solution [12] shows better agreement with the data
and the CFD solutions, being within about 10% lower than
the CFD. These comparisons thus tend to highlight the
importance of the 3D boundary layer effects.

Referring to the accuracy of the turbulence model
employed here, the two-equation k–x model has been
widely incorporated in 3D CFD codes and validated for
complex 3D configurations (for example, see Refs. [28]
and [29]). Calculations by the authors for local Stanton
number for an isothermal flat plate at Re = 106 and
M = 0.2, the model is accurate within 2–6% of standard
correlations over a wide range of temperatures. Thus for
boundary layer type flows considered here (where pressure
gradients and flow separation are absent), it is estimated
that the uncertainty in the heat flux correction factor due
to turbulence model is about 6%.
4. Conclusion

The 3D Navier–Stokes solution of the heat flux gauge
subjected to a surface temperature discontinuity has led
to some insight into the uncertainty in heat flux measure-
ment. It has been shown that the heat flux correction
increases with an increase in plate temperature relative to
the gauge temperature. It also increases with decreasing
value of the gauge radius, and is relatively weakly depen-
dent on the flow Mach number. In general, the effect of
variable properties becomes significant with an increase
in the temperature differential between the plate and the
gauge. The results suggest that the effect of three-dimen-
sionality tends to increase the heat flux correction consider-
ably above the integral predictions. The modified integral
correlation accounting for the sublayer effect performs
much better than the integral solution. For relatively large
values of R/L (say R/L = 0.1 or above), the 3D thermal
boundary layer effects become insignificant. For relatively
small values of R/L (=0.005), there is seen to be a crossover
point between the 3D CFD and 2D CFD results.

Comparisons with limited test data available agree
favorably with the 3D thermal boundary layer results,
and confirm the importance of three dimensionality of
the heat flux gauge and of property variations. Additional
comparisons are recommended to further validate the
accuracy of the model over a wider range of test conditions.
As the heat flux corrections are generally huge, it can be
concluded that the use of water-cooled heat flux gauges
for measurement of convective heat flux should be viewed
with great caution.
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Appendix A. Two-dimensional integral solutions

A.1. Local heat transfer coefficient

Consider the flow past a 2D flat plate with a surface
temperature discontinuity

T w ¼ T w1; 0 < x < L

¼ T w2; x P L
ðA:1Þ
With the aid of an integral method with assumed power
law profiles for velocity and temperature, Rubesin [4] and
later Reynolds, Kays and Klein [5,6] obtained an expres-
sion for the local heat transfer coefficient h(x,L) in turbu-
lent incompressible flow in the form

hðx; LÞ
hðx; 0Þ ¼ bþ f 1� L

x

� �m1
� �m2

; x > L ðA:2Þ
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where

b ¼ ðT w1 � T awÞ=ðT w2 � T awÞ;
f ¼ ðT w2 � T w1Þ=ðT w2 � T awÞ

ðA:3Þ

Here, h(x, 0) denotes the local heat transfer coefficient on
an isothermal plate with constant wall temperature Tw1.
The exponents m1 and m2 are 39/40 and �7/39, respec-
tively, from Rubesin [4], and 9/10 and �1/9 from Reynolds
[5,6], which is valid over a wider range of Reynolds
number. For a single step in temperature (Tw1 = T1,
Tw2 = Tw), the solution due to Reynolds et al. [5,6] is
expressed by

Stx ¼ 0:0287Re�0:2
x Pr�0:4½1� ðf=xÞ9=10��1=9 ðA:4Þ

The corresponding local heat flux ratio is expressed by
[9]

q2ðx; LÞ
q1ðxÞ

¼ 1� /½1� ðL=xÞm1 �m2 ðA:5Þ

where

/ ¼ ðT w1 � T w2Þ=ðT w1 � T awÞ

and

q1 ¼ hðx; 0ÞðT w1 � T awÞ; q2 ¼ hðx; LÞðT w2 � T awÞ

For very small values of L/x, q2/q1 ? 1 � /, which de-
pends on temperatures only, and independent of geometric
parameters [9].

A.2. Length-averaged heat transfer coefficient

Based on the integral solution of [5,6], Westkaemper [12]
derived a length-averaged heat transfer coefficient �hL over
the heat flux gauge as

gL ¼
�hL

h WþL
2
; 0

� � ¼ bF ðL=W Þ þ fHðL=W Þ ðA:6Þ

where �hL ¼ �hðW ; LÞ is given by

�hL ¼
Q

ðW � LÞðT w2 � T awÞ
; Q ¼

Z W

L

qðxÞdx

¼
Z W

L

hðx; LÞðT w2 � T awÞdx ðA:7Þ

The factors F and H are defined by

F ¼ ck
5

4

½1� ðL=W Þ4=5�
ð1� ðL=W ÞÞ

H ¼ ck

5

4

ðL=W Þ4=5

ð1� L=W Þ ½ðW =LÞ9=10 � 1�8=9 � F ðL=W Þ
ðA:8Þ

where ck = 1. Later, Knox [24] pointed out an error in
Westkaemper’s equations for F and H. Considering that

h
W þ L

2
; 0

� �
/ hðW ; 0Þ 2

1þ L=W

� �1=5
it was shown that the correction is provided by

ck ¼ ½2=ð1þ L=W Þ�1=5 ðA:9Þ
A.3. Modified integral solution due to Mukerji et al. [12]

Based on STAN7 2D boundary layer finite difference
code in conjunction with low speed data, Mukerji et al.
[12] recently proposed the following correlation, as an
extension of the integral solution of Reynolds et al. [5,6]:

StðxÞ¼ 0:0287Re�0:2
x Pr�0:4 1� n

x

� �9=10
" #�1=9

þ/ðn;x;RenÞ

8<
:

9=
;

ðA:10Þ
where

/ ¼ ð�0:0139 lnðRenÞ þ 0:246Þ n
x

� �2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðn=xÞ
p

and represents a correction to the Reynolds correlation.
For large values of x/d0 (where d0 represents the hydrody-
namic boundary layer thickness at the location of the tem-
perature step n, and x the downstream distance from the
step), this relation reduces to Eq. (A.4) due to Reynolds
et al. [5,6]. The square root term controls the shape of
the curve near the step. The correlation for local Stanton
number agrees within 5% of STAN7 for x/d0 = 0.05–10,
and Ren = 5 � 105–3 � 106. It predicts low turbulence
intensity (0.4%) rectangular calorimetric data within 2%.

It may be pertinent to point out that the near-step region
has been investigated in [25,26] for a step change in surface
temperature, and in [27] for a step change in surface heat
flux.

Appendix B. Quasi-2D extension

Kandula and Reinarts [13] considered a quasi-2D exten-
sion to approximately account for the cylindrical geometry
of the heat flux gauge. At any lateral plane of the gauge, the
flow is assumed quasi-2D, so that an area-averaged heat
flux correction factor �hA incorporating the 3D effects can
be estimated based on the 2D results (both variable prop-
erty CFD and constant property integral solutions):

gA ¼ �hA h
W þ L

2
; 0

� �	
ðB:1Þ

where

�hA ¼
2

pr2

Z R

y0¼0

�hLðW 0; L0Þð2x0Þdy0; x ¼ R cos h; y ¼ R sin h

ðB:2Þ
Calculations suggest that the quantities �hA and �hL denot-

ing quasi-2D and 2D corrections do not appreciably differ
from one another. For instance, for R/L = 0.01 at M = 4,
R = 1E6, Tw1/Taw = 1.6, the quantity �hA is only 2.5%
higher than �hL.
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